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Abstract—In this paper a cascade control system (CCS) 
structure made of a combination of tensor product (TP)-based 
model transformation and of fuzzy control is designed for the 
position control of the magnetic levitation (Maglev) laboratory 
equipment. The linearized Maglev system model was first 
stabilized using two control method: a state-feedback control 
structure (SF-CS) and a Proportional-Integral-state feedback 
control structure (PISF-CS). A comparative study of these state-
feedback CSs is also included. A parallel distributed 
compensation technique (PDC) is used in the TP-based design of 
the inner state feedback control loops which was next simplified 
by simple least squares identification algorithms. In the next step 
the Takagi-Sugeno (TS) fuzzy controller is designed in the outer 
control loops using the modulus optimum method and the modal 
equivalence principle. A comparative analysis and experimental 
results are given to validate the efficiency of the proposed CCS 
structure. 

Keywords— cascade control system structure; TP–based model 
transformation; fuzzy control; experimental results; Maglev 
systems 

I. INTRODUCTION 

The magnetic levitation (Maglev) system is a nonlinear and 
unstable laboratory equipment used in many practical 
applications. 

The next short bibliographic list contains some recent 
control structure (CS) design approaches for the Maglev 
system given in the literature. This list includes: a 
Proportional-Integral (PI)-state feedback controller and 
Proportional-Derivative (PD) controllers [1], (Inteco, 2008), 
neural networks-based controller [2], state observers (Lee et 
al., 2007), both flux and current feedback controllers (Fan et 
al., 2014), a fault-tolerant controller (Zhai et al., 2017), an 
adaptive robust sliding mode controller and a vibration filter 
controller in [3], a fractional order PID controller in [4], a PD 
and a Proportional-Integral-Derivative (PID) controller in [5], 
Linear-Quadratic-Gaussian control in [6]. Many types of fuzzy 
controllers were applied to Maglev systems as: a hybrid fuzzy 

decoupling controller in [7], a fuzzy PI controller based on 
feedback linearization in (Hu et al., 2011), a fuzzy sliding 
mode control based of feedback linearization in (Yu et al., 
2010), a back stepping fuzzy-neural-network controller in (Wai 
et al., 2014) and (Wai et al, 2015), a discrete switched fuzzy 
controller in (Mahmoud et al, 2015). 

The Tensor Product–based model transformation (TP–MT) 
is a numerical method, which starts with Linear Parameter–
Varying (LPV) dynamic models and produces Linear Time-
Invariant (LTI) systems. The main advantage of this technique 
is that both the linear matrix inequality (LMI) and the parallel 
distributed compensation (PDC) frameworks are applied 
immediately to the affine models. The generalized TP–MT is 
proposed in [8] along with an analysis on how it can be used 
both in modeling and in polytopic model-based design 
approaches. In [9] the TP-MT is used in order to obtain 
polytopic quasi– Linear Parameter–Varying (qLPV) models of 
diabetes mellitus. TP-based control schemes with friction 
compensation are proposed in [10]–[12]. Electric drive and 
temperature control applications are given in [13] and [14]. 
The stabilization of a 3-degrees of freedom (DOF) remote 
control (RC) helicopter via the combination of TP and PDC is 
carried out in [15]. The TP model transformation is also used 
for position control of a Maglev system in [16] and for the 
water level control of a vertical three tank systems in [17]. 

Other combinations of TP–MT and PI and fuzzy control as 
a cascade control system structure are presented in [14], [18], 
[19]. These CS combinations were validated by laboratory 
equipment such as horizontal three tank systems, vertical three 
tank systems and Air Stream and Temperature Control Plant 
(ASTCP). 

The main contribution of this paper is the design and real-
time validation of two cascade control structures (CCS) for the 
position control of a Maglev laboratory equipment. The 
linearized Maglev system model is stabilized in the first step 
using two control methods: a state-feedback control structure 
(SF-CS) and a PI-state feedback control structure (PISF-CS). 
In the second step, one CCS which consists of an inner TP-
based state feedback control loop (TP-SF-CS) and an outer 
Tagaki–Sugeno (TS) fuzzy controller-based control loop 
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(fuzzy-TP-SF-CS) is designed for SF-CS and one CCS which 
consists of an inner TP-based PI state feedback control loop 
(TP-PISF-CS) and outer TS fuzzy controller-based control 
loop (fuzzy-TP-SF-CS) is designed for PISF-CS. A PDC 
technique is used in TP-SF-CS and TP-PISF-CS respectively 
which were next characterized by benchmark type simplified 
models. The modulus optimum method (MO-m) and the modal 
equivalent principle are used in the second step to design the 
fuzzy-TP-SF-CS and fuzzy-TP-PISF-CS respectively. The 
experimental validation of the CCS for the stabilized linearized 
Maglev system model. The comparison of two types of CSs for 
the Maglev system: the SF-CS proposed in this paper and the 
PISF-CS discussed in [1]. Both structures involve control 
algorithms with similar complexity, namely fuzzy and state 
feedback ones. 

The paper treats these topics: the stabilization of the 
Maglev system is given in Section II. Section III is dedicated to 
the design of the two cascade CS for the stabilized linearized 
Maglev system model. The experimental results and the 
control performances are presented in Section IV. The 
conclusions are pointed out in Section V. 

II. STABILIZATION OF MAGLEV SYSTEM. COMPARATIVE STUDY 

The state–space process model of Maglev system is 
(Inteco, 2008) 
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where: 
1x ∈[0, 0.0016] – the sphere position (m), ℜ∈v  – the 

sphere speed (m/s), iEM1, iEM2∈[0.03884, 2.38] – the currents 
in the upper electromagnet (EM1) and lower electromagnet 
(EM2) (A), uEM1, uEM2 ∈ [0.005, 1] – the (control and/or 
disturbance) signals applied to EM1 and EM2, respectively 
(V), and y – the controlled output (m). The parameters of this 
process (Inteco, 2008), (Bojan-Dragos et al., 2016) get the 
following values: Ds=0.06 (m) is the diameter of the sphere, xd 
=0.09 (m) is the distance between electromagnets minus 
sphere diameter, g=9.81 (m/s2) is the gravity acceleration, 
m=0.0571 (kg) is the sphere mass, the parameters ki=0.0243 
(A) and ci=2.5165 (A) correspond the actuator dynamic 
analysis, FemP1=1.7521⋅10–2 (H), FemP2=5.8231⋅10–3 (m), 
fiP1=1.4142⋅10–4 (ms), fiP2=4.5626⋅10–3 (m). 

In order to design the proposed CSs, the model (1) is first 
reduced from a fourth–order system to a third–order system 
with the following state variables: the position 

1x , the speed v 

and the current in EM1, iEM1. Then the reduced model is 
linearized at an equilibrium point (Inteco, 2008) with the 
coordinates ),,,( 111 EMEM uivxP : 
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where the elements of the matrices A  and 
1ub  are 
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and their full expressions are given in (Bojan-Dragos et al., 
2016) and [20]. 

The linearized model (2) is stabilized by state feedback 
and pole placement control design (Bojan-Dragos et al., 2016) 
and [20], with the imposed closed–loop system poles 

}94.231,05.41,81.31{* −−−=p , and the gain matrix 

]15.062.163.66[ −=T
ck  is obtained. The resulted state–

space model of the stabilized linearized Maglev control 
system (SF-CS) model is: 

 

, ,,,

,]    [],0  0  1[

,0

0

,0

010

,

,  

1
3113

1
33

11

31

1

333231

2321

31
11

ℜ∈ℜ∈ℜ∈ℜ∈

==
















=
















=

=

ℜ∈+=

x
xTx

x
x

x

T
EM

T

xx

T

x
xxx

u

ivx

baaa

aa

y

u

cbA

xc

bA

xc

xbxAx

 (4) 

where the elements of the matrices 
xA  and 

x1b  are given in 
(Bojan-Dragos et al., 2016) and [20], and T indicates matrix 
transposition. The block diagram of SF-CS is given in Fig. 1 
(a). 

In order to compare the SF-CS designed by the authors, a 
similar CS with PI state-feedback controller, namely PISF-CS, 
was designed following the steps presented in [1]. The block 
diagram is illustrated in Fig. 1 (b). 

The control law of the PISF-CS is 

 ,)(1 += ττ du IPx xkxk  (5) 

where 
Pk  and 

Ik  are the PI state feedback gain matrices, 
namely row matrices for this CS. 
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Fig. 1. Block diagram of SF-CS (a) and PISF–CS (b) for Maglev. 

The state equation of the obtained PISF-CS closed-loop 
system model is 

 .)()(
0

11  ττ++=
t

IuPu dxkbxkbAx  (6) 

In order to compute the gain matrices 
Pk  and 

Ik , the 
closed-loop characteristic equation (7) and the desired 
characteristic polynomial (8) are used: 

 [ ] ,0/)(det 11 =−+− ss IuPu kbkbAI  (7) 

 ....)( 1
110

+
+β+β++β+β=Δ n

n
n

nd ssss  (8) 

Using the linearized model (2) and imposing the same 
closed loop poles as in SF-CS case, the following values of 
the PISF-CS gain matrices were obtained: 

[ ]21.076.113.65 −=Pk , [ ]2.004.113.25 −=Ik . 

III. THE CASCADE CONTROL STRUCTURES DESIGN 

The design of the CSs presented in the following 
paragraphs are treated in an unified manner for both the SF-
CS and PISF-CS, namely TP-SF-CS, TP-PISF-CS, fuzzy-TP-
SF-CS and fuzzy-TP-PISF-CS. In order to present the 
numerical values of the controller tuning parameters the 
authors have used the following superscript: (1) for SF-CS and 
(2) for PISF-CS. The design approach applied to the CCS 
structure consists of the design of the TP-based Controller and 
the design of the TS fuzzy controller. 

A.   The TP-based Controller Design 

The main idea of TP–MT was originally introduced in [8]. 
The TP–MT converts LPV dynamic models into convex 
combinations of LTI systems using the LMI-based control 
design techniques in order to satisfy the CS performance 
requirements. These combinations depend on variable 
parameters, which can also be important variables of the 
control systems as, for example, a part of the state variables. 

In this paper two TP-based CSs, namely TP-SF-CS and 
TP-PISF-CS, were designed for both the SF-CS and the PISF-
CS using the block diagram given in Fig. 2, where ref  is the 

reference input (the set-point). 
The TP–MT consists of three steps, which are given in 

more detail in [8], [21] and [22]. 

Let the following qLPV model [8]: 

 
Fig. 2. Block diagram of TP–SF–CS / TP-PISF-CS for Maglev system, 

where “Stabilized” indicates that the linearized process model given in 
(3) is actually stabilized. 
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with input mt ℜ∈)(u , output lt ℜ∈)(y  and state vector 
qt ℜ∈)(x . The parameter vector fulfils 

 ,],[...],[],[  ,)( 2211
N

NN bababat ℜ⊂×××=ΩΩ∈p  (10) 

where Ω  is a closed hypercube. The system matrix 

 )()(
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))(( qmql
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


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pDpC

pBpA
pS  (11) 

is a parameter–varying object. 

For any parameter vector )(tp  the system matrix ))(( tpS  in 
(11) is given as: 

 ))(())((
1

tpt n

N

n
wSpS

=
⊗=  (12) 

where 
Niii ,...., 21

S are the LTI vertex systems, ))(( tpnw  are the 

weighting function (w.f.) matrices, m is the number of system 
inputs, and q is the number of state variables [16], [21]. 

The stabilized linearized Maglev system model for both 
SF-CS and PISF-CS can also be expressed as: 
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where T
EMivx ][ 11=x  is the process state vector, 

T
EM

T ixpp ][][)( 1121 ==tp  is the bounded parameter 

vector, y  is, as in Section II, the controlled output, the 

matrices )(),(),( 1 pcpbpA T
xx

 result from (Bojan-Dragos et al. 

2016), and T points out matrix transposition. 

Introducing in (13) the following notation: 

 ,])()([)( 43
1

×ℜ∈= pbpApS xx
 (14) 

the model is transformed in the qLPV state–space form 
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Using (12) and (15), the idea of TP–MT is to obtain LTI 
models from the qLPV model (15) as follows: 
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where S is the )2( +N –dimensional core tensor, )( nn pw  are 

the continuous w.f. matrices, N  is tensor’s dimension, i and k 
are the numbers of singular values for position and current, 
respectively. The w.f.s in this paper are of CNO type. 

The resulted stabilized linearized Maglev system LTI 
models are obtained for three singular values for position, 

3...1=i , and three singular values for current, 3...1=k : 
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Two control objectives are imposed: the first one is to carry 
out the asymptotic stabilization of the control system and the 
second one is to constrain the control signal. The first control 
objective is solved by the application of the PDC design 
framework. The asymptotic stability of the closed-loop CS is 
equivalent to the sufficient condition of existence of 

01 >= −PX  (with P  – a positive definite regular matrix) and 

ki,M  that satisfy the following LMIs [8], [21]: 
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The state feedback gain matrices 
ki ,K  that corresponds to 

each LTI vertex system are next computed as [21] 

 .1
,,

−= XMK kiki
 (19) 

After that, the application of PDC to the stabilized 
linearized Maglev system model leads to the state feedback 
control law: 

 ,)()( ,2,2

3

1

3

1
1,11 xK 







−=−= 
= =

kik
i k

iTPx pwpwrefurefu  (20) 

In order to solve the second control objective, it is assumed 
that φ≤2||)0(|| x , where T]000[)0( =x , and 01.1 >=φ . 
Then the following LMI results [21]: 

 .2 XI ≤φ  (21) 

The constraint μ≤|| 1xu  ( 10=μ  in this paper) is applied at 

all time moments if the next nine LMIs are satisfied: 

 .3...1  ,3...1  ,02
,

, ==≥









μ
ki

ki

T
ki

IM

MX  (22) 

The matrices X  and 
ki ,M  are computed by solving the 

stability conditions (18), (21) and (22) using the YalmipR2015 
solver [16]. The solutions are next substituted in (19) leading to 
the values of the LTI feedback gains. 

Examples of feedback gains )1(
,kiK  obtained for SF-CS are 

]22.1  87.1  49.271[)1(
1,1 −−=K , ]08.1  87.1  79.322[)1(

3,3 −−=K , 

and the ones obtained for PISF-CS, )2(
,kiK  are 

]45.1  32.1  01.265[)2(
1,1 −−=K , ]67.1  03.1  84.315[)2(

3,3 −−=K . 

The equivalent state feedback gain matrices given above 
are employed in the computation of the following two three-
order benchmark type closed-loop transfer functions of the 
inner control loops, )()1( sH P

 and )()2( sH P
: 

 )]1)(1)(1/[()( )1(
3

)1(
2

)1(
1

)1()1( sTsTsTksH PP +++= , (25) 

 )]1)(1)(1/[( )2(
3

)2(
2

)2(
1

)2()2( sTsTsTkH PP +++= , (26) 

where 89.0,02.1 )2()1( == PP kk  are the controlled process gains, 

068.0,1.0 )2(
1

)1(
1 == TT  are the large time constants, 

012.0,048.0,009.0,03.0 )2(
3

)2(
2

)1(
3

)1(
2 ==== TTTT  are the 

small time constants. Using a simple least-squares-based 
experimental approximation of the inner control loops the 
above parameters were obtained. 

The third order t.f.s. (25) and (26) were reduced to second 
order benchmark type closed-loop t.f. and two PI controllers 
were designed using MO-m with the general t.f.: 

  ./)1()( ssTksH ccPI +=  (27) 

The following numerical values of PI controller tuning 
parameters 25.12)2/(1 )1()1()1( =⋅⋅= ΣTkk Pc

, )1(
3

)1(
2

)1( TTT +=Σ  and 

1.0)1(
1

)1( == TTc
 are obtained for SF-CS and 

36.9)2/(1 )2()2()2( =⋅⋅= ΣTkk Pc
, )2(

3
)2(

2
)2( TTT +=Σ  and 

068.0)2(
1

)2( == TTc
 are obtained for PISF-CS. 
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B.  The Takagi-Sugeno Fuzzy Controller Design 

The improvement of the CS performance is obtained by 
the replacement of the PI controller in the outer loops with the 
t.f. (26) by TS fuzzy controllers. The two control structures, 
namely fuzzy-TP-SF-CS / fuzzy-TP-PISF-CS are obtained 
with the block diagram illustrated in Fig. 3. 

 

Fig. 3. Block diagram of CCS for the stabilized linearized Maglev system 
model. 

The fuzzy controller design is formulated from the PI 
controller design as the fuzzy controllers considered in this 
paper are carrying out the nonlinear merge of seven linear PI 
controllers placed in the rule consequents. Tustin’s method 
with s 00025.0=sT  was used in order to discretize the 

continuous-time PI controllers. The quasi-continuous digital PI 
controller is obtained as: 

 )],()([)( )()()( keKkeKku IP
rrr

F Δ+αγ=Δ  (28) 

where 7,1=r  is the index of the controller used in the 
consequent of the rules of the TS fuzzy controller; the big 
number of the values for index r (seven) was chosen in order to 
ensure a smooth and continuous switching between the PI 
controllers and an appropriate nonlinear input-output map of 
the TS fuzzy controller; Ts is the sampling period and the 
expressions of the PI controller tuning parameters, 

PK  and 
IK  

are 

 ./),2/(1 csIcsP TTKTTK =−=  (29) 

The fuzzification employs five linguistic terms with 
triangular and trapezoidal membership functions for the input 
variables, )(ke  and )(keΔ . 

The parameters of fuzzy block 0>eB  and 
eBΔ  are chosen 

based on the experience of the CS designer and on modal 
equivalence principle. MAX-MIN compositional rule of 
inference is used in the inference engine. The center of gravity 
method is used for defuzzification. 

The rule base of the discrete-time dynamic TS fuzzy 
model consists of 25 fuzzy rules 

 
)],()([)(

 THEN )LT IS )( AND LT IS )(( IF
)()()(

ee

keKkeKku

keke

IP
rrr

F Δ+αγ=Δ

Δ Δ  (30) 

which are also given in Table I. This rule base is used in both 
cases SF-CS and PISF-CS. 

The appropriate choosing of the values of the parameters 
0>η  and 0>α  can modify the control system performance 

indices. In the experimental scenario, the numerical values of 
these parameters are: 02.0)1( =eB , ∈γ )1( {3, 4, 4.6, 2.4, 1.75, 

3.3, 4.5} and ∈α )1( {0.01, 0.0087, 0.007, 0.005, 0.0032, 

0.0031, 0.0033} for TP-SF-CS and 017.0)2( =eB , ∈γ )2( {3.5, 

4.1, 5, 2.6, 2, 3.8, 4.9}, and ,0076.0,009.0,012.0{)2( ∈α  

}0038.0,0029.0,003.0,0054.0  for TP-PISF-CS. 

 

TABLE I.  THE RULE BASE 

)(keΔ  
)(ke  

NB NS ZE PS PB 

PB )4(
FuΔ  )5(

FuΔ  )6(
FuΔ  )7(

FuΔ  )7(
FuΔ  

PS )3(
FuΔ  )4(

FuΔ  )5(
FuΔ  )6(

FuΔ  )7(
FuΔ  

ZE )2(
FuΔ  )3(

FuΔ  )4(
FuΔ  )5(

FuΔ  )6(
FuΔ  

NS )1(
FuΔ  )2(

FuΔ  )3(
FuΔ  )4(

FuΔ  )5(
FuΔ  

NB )1(
FuΔ  )1(

FuΔ  )2(
FuΔ  )3(

FuΔ  )4(
FuΔ  

 
The control signal applied to the 

xu1
 is computed by 

combining output variable of the TP controller, 
TPu , with the 

output variable of the TS fuzzy control, 
Fu , as 

 ,1 TPFx uuu −=  (31) 

where 
TPu  is given in (20) and 

Fu  is the control signal applied 

to TP-SF-CS and is obtained after the integration of 
FuΔ  

according to 

 ).1()()( −+Δ= kukuku FFF
 (32) 

However, equation (32) is not needed if an integral process 
(including the actuator) is controlled. PD fuzzy controllers are 
used in such situations, and 

FuΔ  is applied directly to the 
actuator. 

IV. EXPERIMENTAL RESULTS 

This section is dedicated to test, analyze and validate the 
proposed CSs by real-time experimental results plotted in 
Figs. 4 to 8. First of all, all CSs were tested on the time frame 
of 20 s using a step reference input of 0.007 m amplitude. 
Only the sphere position vs. time is plotted for all CSs. For the 
comparative analysis three pairs of CSs were taken into 
consideration: {SF-CS and PISF-CS}, {TP-SF-CS and TP-
PISF-CS} and {fuzzy-TP-SF-CS and fuzzy-TP-PISF-CS}. 

The first two CSs used to stabilize the linearized Maglev 
system model, SF-CS and PISF-CS, are plotted in Fig. 4. The 
TP-SF-CS and TP-PISF-CS were also tested on the real-world 
Maglev system and the responses of sphere position are 
illustrated in Fig. 5. The fuzzy-TP-SF-CS and fuzzy-TP-PISF-
CS were tested on the Maglev system in three testing 
scenarios: (i) on step reference the resulted sphere position is 
presented in Fig. 6; (ii) a sine reference input was applied to 
the CCSs and the resulted sphere position is presented in Fig. 
7; (iii) a staircase reference input signal was applied to the 
CCSs and the resulted sphere position is presented in Fig. 8. 

In Table II and Table III, the performance indices in terms 
of mean square error (MSE), settling time and overshoot are 
highlighted and best results achieved are marked with “X”. The 
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best performance in terms of MSE was achieved by the fuzzy-
TP-SF-CS for all three reference input cases. The best 
performance in terms of overshoot is achieved by the fuzzy-
TP-SF-CS for staircase reference input case. 

 

Fig. 4. Sphere position x1 vs. time for SF-CS and PISF-CS with step 
reference input. 

 

Fig. 5. Sphere position x1 vs. time for TP-SF-CS and TP-PISF-CS with step 
reference input. 

 

Fig. 6. Sphere position x1 vs. time for Fuzzy-TP-SF-CS and Fuzzy-TP-PISF-
CS with step reference input. 

In all three cases namely PISF-CS, TP-PISF-CS and fuzzy-
TP-PISF-CS, the zero steady-state control error is ensured due 
to the presence of the integrator in the SF structure, which is an 
advantage compared to CS proposed by the authors, SF-CS. 
These CSs have the following disadvantage: the settling time is 
bigger than the one computed in the CS designed by authors 
and there are many oscillations. 

The experimental results indicate that CSs with several 
controllers track the reference of the position of the sphere. 
Although the objectives of this TP controller are to carry out 
the asymptotic stabilization of the control system and to restrict 
the control signal, so it is not the purpose of this controller to 
track a reference input, the integrator deals with reference input 
tracking. 

TABLE II.  MEAN SQUARE ERROR 

Control structures Step reference input Compara-
tive 

analysis 
MSE (m) Settling 

time (s) 
Over
shoot 
(%)

SF-CS 61003.9 −⋅  - - 
PISF-CS 71073.6 −⋅  12 - X
TP-SF-CS 81093.4 −⋅  6 21 
TP-PISF-CS 81039.4 −⋅  6 15 X
Fuzzy-TP-SF-CS 81016.2 −⋅  4 21 X
Fuzzy-TP-PISF-CS 8101.3 −⋅  13 18 

 

V. CONCLUSION 

This paper has presented the design and real-time 
validation of two CCSs applied to Maglev system position 
control systems. The linearized Maglev system model was 
stabilized using a state-feedback CS and a PI-state feedback 
CS. Then, for each CS two cascade control structures were 
designed consisting in a combination of TP–MT and fuzzy 
control. The real time experimental results prove that the CCS 
structure with fuzzy-TP-SF-CS ensures zero steady–state 
control error, small settling times and overshoots. The values 
of MSE are small due to the fact that the order of magnitude 
of the reference input and the controlled output (the sphere 
position) is millimeters. 

 

Fig. 7. Sphere position x1 vs. time for Fuzzy-TP-SF-CS and Fuzzy-TP-PISF-CS with sine reference input. 
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Fig. 8. Sphere position x1 vs. time for Fuzzy-TP-SF-CS and Fuzzy-TP-PISF-CS with staircase reference input. 

TABLE III.  PERFORMANCE INDICES 

Control structure Sine reference input Staircase type reference input Comparative 
analysis MSE (m) MSE (m) Settling time (s) Overshoot (%) 

R1 R2 R3 R1 R2 R3  
Fuzzy-TP-SF-CS 8107.5 −⋅  81068.4 −⋅  2 2 1.5 0.3 0.05 0.2 X 
Fuzzy-TP-PISF-CS 81033.6 −⋅  8106.6 −⋅  6 2 1.5 0.4 0.1 0.2  

 
Future research will be focused on the performance indices 

improvement by the design of CSs with adaptive nonlinear 
controllers and CSs with fractional order controllers (Folea et 
al., 2016), (Muresan et al., 2015) applied to mechatronics 
systems and by their fair comparison. 
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